Foreversport.ru

Спорт, красота и Здоровье
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула для определения

Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объемы геометрических фигур.

Параллелепипед.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр.

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.

Усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Куб.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2 )

Шар.

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма.

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара.

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Формула скорости — обозначение, единицы измерения и примеры нахождения

Понятие и основные термины

Под скоростью понимается величина, определяющая быстроту и направление перемещения материальной точки в выбранной системе отсчёта. Термин широко применяется в математике, физике, химии. Так, с его помощью описывают реакции, изменения температуры, передвижение тел, используют как производную рассматриваемой величины.

Слово «скорость» произошло от латинского «velocitas», обозначающее движение. В качестве единицы измерения, согласно Международной системе единиц (СИ), для неё выбран метр, делённый на секунду (м/с). Обозначается скорость буквой V, вне зависимости от науки, в которой её применяют. Простейшая формула, с помощью которой определяют величину, выглядит следующим образом: V = S: t. Где:

  • S — расстояние (путь), пройденное материальной точкой или телом (м);
  • T — время за которое она преодолела путь (с).

Это обобщённое уравнение, но в то же время позволяющее получить представление о понятии. Часто это неравенство называют уравнением пути. Формула используется для вычисления только в том случае, если движение не изменяется на всём исследуемом участке.

Впервые с выражением знакомят учащихся на уроках математики в пятом классе. Учитель предлагает научиться решать простые задачи на нахождение характеристики при известной длине пройденного пути и потраченного на это времени. Например, автомобиль за четыре часа проехал 16 километров. Необходимо найти, с какой скоростью он двигался. Решение задачи сводится к двум действиям. В первом все заданные величины переводятся в систему СИ: 4 часа = 240 минут = 10240 секунд; 16 километров = 16000 метров. Во втором действии данные подставляют в формулу и вычисляют ответ: V = 16000/10240 = 1,6 м/с.

Но, помимо равномерного движения, то есть при котором скорость является константой, есть ещё и другие виды перемещений. Использовать обобщённое уравнение для них нельзя. Для каждого вида движения применяется своя формула. Существующую скорость разделяют на следующие виды:

  • неравномерную;
  • среднюю;
  • равномерно-переменную;
  • поступательную;
  • вращательную;
  • ускоренную.

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r -1 (t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t 2 /2 = (V 2 — V 2 0) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V 2 0 — 2* A * s) ½ . Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s) ½ .

Среднее значение

В кинематике для нахождения характеристики используется усреднённый параметр. Используют его при изучении движения материальной точки или любого физического тела. Для определения средней скорости используют две величины: скалярную и векторную. Первой обозначают путевое движение, а второй — перемещение.

Путевая скорость определяется как отношение расстояния пройденного тела ко времени, затраченному на его прохождение: V = Σs / Σt.

По сути, среднее значение находится как среднеарифметическое от всех скоростей, если рассматриваемая точка передвигалась одинаковые отрезки времени. В ином же случае найденная величина будет взвешенной среднеарифметической величиной.

Математически формулу средней скорости записывают так: V (t + Δ t) = Δ s/ Δ t = (s (t + Δ t) — s (t)) / Δ t. Учитывая, что Δs зависит от длины пути, которую преодолела точка за время Δt, верной будет запись: Δ s = s (t + Δt) — s (t). Если же затраченное время стремится к нулю, получится формула, совпадающая с выражением для нахождения мгновенной скорости.

Вектор материальной точки находится из отношения положения тела к отрезку времени: V (t + Δt) = Δr / Δt = (r (t + Δt) — r (t)) / Δt, где r — радиус-вектор. Когда тело выполняет равномерно-прямолинейное перемещение, то справедливым будет равенство: = V.

Например, мяч первую половину пути длиной 100 метров катился с одной скоростью в течение двадцати секунд, а вторую с другой и одну минуту. Необходимо вычислить среднюю скорость. Согласно формулам, интервал движения на первом участке пути будет равен: t1 = s/2*V1, а на втором t2 = s/2*V2. Решением задачи будет: Vср = s/(t1+t2) = s/(s/2*v1 + s/2*v2) = 2*V1*V2/(V1+V2) = 100/(20 +60) = 1,25 м/с.

Угловая скорость

Проявляется этот вид при вращении тела вокруг оси. Траектория представляет собой круговое движение. Основным параметром, учитывающимся при его нахождении, является угол поворота (f). Все элементарные угловые движения являются векторами. Обычный поворот равен углу вращения тела df за небольшой отрезок времени dt в противоположную сторону от хода часовой стрелки.

В математике формулу для нахождения углового параметра записывают как w = df/dt. Угловая скорость — аксиальная величина, располагающаяся вдоль мгновенной оси и совпадающая с поступательным вращением правого винта. Равномерное вращение, то есть движение, при котором происходит поворот на один и тот же угол, называют равномерным. Модуль угловой скорости определяют по формуле: w = f/t, где f — угол поворота, t — время, в течение которого происходило вращение. Учитывая, что Δf = 2p, формулу можно переписать до вида: w = 2p/T, то есть с использованием периода.

Существует связь между угловой скоростью и числом оборотов: w = 2*p*v. Это понятие используется для решения заданий при описании неравномерного вращения. Есть также выражение, связывающее линейную скорость с угловой: v = [w*R], где R — компонента, проведённая перпендикулярно к радиус-вектору. В качестве единицы измерения параметра используется радиан, делённый на секунду (рад/с).

Например, необходимо определить угловую скорость вариатора в тот момент, когда подвешенная масса пройдёт расстояние, равное 10 метрам. Радиус плеча составляет 40 сантиметров. В начальный момент подвес находится в состоянии покоя, а затем начинает опускаться с ускорением A = 0,04 м/с2.

Учитывая, что линейная скорость вариатора совпадает с движением груза по прямой, можно записать: V = (2*a*S)½. Должен получится ответ: V = (4*0,04*10)½ = 1,26 м/с. Угловую же скорость находят по формуле: w = v/R, так как R = 40 см = 0,4 м, то W = 1,26/0,4 = 3,15 рад/с.

Закон сложения

Для разных систем отсчёта движения материальных точек существует закон, связывающий их между собой. Согласно ему, скорость чего-либо относительно системы, находящейся в покое, определяется суммой силы перемещения скоростей в подвижной области и более быстрой системы отсчёта по отношению к неподвижной.

Чтобы понять суть закона, лучше всего рассмотреть простой пример. Пусть по железной дороге движется вагон со скоростью 80 км/ч. В этом вагоне перемещается пассажир со скоростью 3 км/ч. Приняв за систему отсчёта неподвижный железнодорожный путь, можно утверждать, что скорость пассажира относительно неё равна сумме скорости вагона и человека.

Если движение вагона и пассажира происходит в одном направлении, то значения просто складываются, V = 80+3 = 83 км/ч, в противоположном — вычитаются V = 80−3 = 77 км/ч. Но это правило будет верным лишь тогда, когда перемещение происходит по одной линии. Поэтому, если человек будет передвигаться в вагоне под углом, следует учитывать и этот фактор, так как по своей сути искомый параметр — величина векторная. Фактически рассчитываются две скорости: сближения и удаления.

Рассматриваемое событие происходит за время Δt. За этот промежуток человек преодолеет расстояние ΔS1, вагон же сможет проехать путь ΔS2. Используя закон, перемещение пассажира будет определяться по формуле: ΔS = ΔS1 + ΔS2. Собственное движение человека относительно железнодорожного пути будет равно V = ΔS1 / Δ t. Выразив значение из формулы нахождения ΔS, можно найти скорость вагона относительно железной дороги: V2 = ΔS2 / Δt.

Использование онлайн-калькулятора

В интернете существуют сервисы, позволяющие находить параметр даже тем, кто не знает формулы или слабо ориентируется в теме. С их помощью можно решать довольно сложные задания, которые требуют скрупулёзного расчёта и немалой затраты времени. Онлайн-вычисление обычно занимает не более нескольких секунд, а за достоверность результата можно не беспокоиться.

Воспользоваться сайтами-калькуляторами сможет любой пользователь, имеющий подключение к интернету и установленный веб-браузер с поддержкой Flash-технологии. Никакой регистрации или указания личных данных сервисы, предлагающие такого рода услуги, не требуют. Система автоматически рассчитает ответ.

Из множества сайтов можно выделить три наиболее популярных среди потребителей:

  1. Справочный портал «Калькулятор».
  2. Allcalc.
  3. Fxyz.

Все они имеют интуитивно понятный интерфейс и, что примечательно, на своих страницах содержат таблицы всех формул, используемых для решения заданий, правильные условные обозначения и описания процессов вычисления.

Расчёт скорости любого тела несложен. Главное, знать формулы и правильно определить вид перемещения. При этом всегда можно воспользоваться услугами онлайн-калькуляторов. Через них решить поставленную задачу или проверить свои расчёты.

Математические формулы. Шпаргалка для ЕГЭ с математики -best

#математика

Формулы сокращенного умножения

(а+b) 2 = a 2 + 2ab + b 2

(а-b) 2 = a 2 – 2ab + b 2

a 3 – b 3 = (a-b)( a 2 + ab + b 2 )

a 3 + b 3 = (a+b)( a 2 – ab + b 2 )

(a + b) 3 = a 3 + 3a 2 b+ 3ab 2 + b 3

(a – b) 3 = a 3 – 3a 2 b+ 3ab 2 — b 3

Свойства степеней

a m/n = (a≥0, n ε N, m ε N)

a — r = 1/ a r (a>0, r ε Q)

a m · a n = a m + n

a m : a n = a m – n (a≠0)

Первообразная

Если F’(x) = f(x), то F(x) – первообразная

x n = x n +1 /n+1 + C

a x = a x / ln a + C

cos x = sin x + C

1/ sin 2 x = – ctg x + C

1/ cos 2 x = tg x + C

sin x = – cos x + C

Геометрическая прогрессия

q – знаменатель прогрессии

b n = b1 · q n – 1 – n-ый член прогрессии

Модуль

-a, если a 3 ; P = 6 a 2

S = 1/3 S·h; S – площадь основания

6. Пирамида правильная S =1/2 p·A

A – апофема правильной пирамиды

7. Цилиндр круговой V = S·h = πr 2 h

8. Цилиндр круговой: SБОК = 2 πrh

9. Конус круговой: V=1/3 Sh = 1/3 πr 2 h

10. Конус круговой: SБОК = 1/2 pL= πrL

Тригонометрические уравнения

sin x = 1, x = π/2 + 2 πn

sin x = -1, x = – π/2 + 2 πn

cos x = 0, x = π/2 + 2 πn

cos x = 1, x = 2πn

cos x = -1, x = π + 2 πn

Теоремы сложения

cos (x +y) = cosx ·cosy – sinx ·siny

cos (x -y) = cosx ·cosy + sinx ·siny

sin (x +y) = sinx ·cosy + cosx ·siny

sin (x -y) = sinx ·cosy – cosx ·siny

tg (x ±y) = tg x ± tg y/ 1 — + tg x ·tg y

ctg (x ±y) = tg x — + tg y/ 1± tg x ·tg y

sin x ± sin y = 2 cos (x±y/2)· cos (x — +y/2)

cos x ± cosy = -2 sin (x±y/2)· sin (x — +y/2)

1 + cos 2x = 2 cos 2 x; cos 2 x = 1+cos2x/2

1 – cos 2x = 2 sin 2 x; sin 2 x = 1- cos2x/2

a,b – основания; h – высота, c – средняя линия S = (a+b/2)·h = c·h

а – сторона, d – диагональ S = a 2 = d 2 /2

a – сторона, d1, d2 – диагонали, α – угол между ними S = d1d2/2 = a 2 sinα

9. Правильный шестиугольник

a – сторона S = (3√3/2)a 2

S = (L/2) r = πr 2 = πd 2 /4

Правила дифференцирования

( f (x) + g (x) )’ = f ’(x) + g’(x)

(tg x)’ = 1/ cos 2 x

(ctg x)’ = – 1/ sin 2 x

(f (kx + m))’ = kf ’(kx + m)

Уравнение касательной к графику функции

Площадь S фигуры, ограниченной прямыми x=a, x=b

Формула Ньютона-Лебница

t π/4 π/2 3π/4 π cos √2/2 0 -√2/2 1 sin √2/2 1 √2/2 0 t 5π/4 3π/2 7π/4 cos -√2/2 0 √2/2 1 sin -√2/2 -1 -√2/2 0 t π/6 π/4 π/3 tg 0 √3/3 1 √3 ctg — √3 1 √3/3

in x = b x = (-1) n arcsin b + πn

cos x = b x = ± arcos b + 2 πn

tg x = b x = arctg b + πn

ctg x = b x = arcctg b + πn

Теорема синусов: a/sin α = b/sin β = c/sin γ = 2R

Теорема косинусов: с 2 =a 2 +b 2 -2ab cos y

Неопределенные интегралы

∫ x n dx = (x n +1 /n+1) + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ dx/sin 2 x = -ctg + C

∫ dx/cos 2 x = tg + C

∫ x r dx = x r+1 /r+1 + C

Логарифмы

Градус 30 45 60 sin 0 1/2 √2/2 √3/2 cos 1 √3/2 √2/2 1/2 tg 0 √3/3 1 √3 t π/6 π/3 2π/3 5π/6 cos √3/2 1/2 -1/2 -√3/2 sin 1/2 √3/2 √3/2 1/2 90 120 135 150 180 1 √3/2 √2/2 1/2 0 0 -1/2 -√2/2 -√3/2 -1 — -√3 -1 √3/3 0 t 7π/6 4π/3 5π/3 11π/6 cos -√3/2 -1/2 1/2 √3/2 sin -1/2 -√3/2 -√3/2 -1/2

Формулы двойного аргумента

cos 2x = cos 2 x – sin 2 x = 2 cos 2 x -1 = 1 – 2 sin 2 x = 1 – tg 2 x/1 + tg 2 x

sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg 2 x

tg 2x = 2 tg x/ 1 – tg 2 x

ctg 2x = ctg 2 x – 1/ 2 ctg x

sin 3x = 3 sin x – 4 sin 3 x

cos 3x = 4 cos 3 x – 3 cos x

tg 3x = 3 tg x – tg 3 x / 1 – 3 tg 2 x

sin s cos t = (sin (s+t) + sin (s+t))/2

sin s sin t = (cos (s-t) – cos (s+t))/2

cos s cos t = (cos (s+t) + cos (s-t))/2

Формулы дифференцирования

x’ = 1 (sin x)’ = cos x

(kx + m)’ = k (cos x)’ = – sin x

(1/x)’ = – (1/x 2 ) ( ln x)’ = 1/x

(e x )’ = e x ; (x n )’ = nx n-1 ;(log a x)’=1/x ln a

Площади плоских фигур

1. Прямоугольный треугольник

S = 1/2 a·b (a, b – катеты)

2. Равнобедренный треугольник

S = (a/2)·√ b 2 – a 2 /4

3. Равносторонний треугольник

S = (a 2 /4)·√3 (a – сторона)

4. Произвольный треугольник

a,b,c – стороны, a – основание, h – высота, A,B,C – углы, лежащие против сторон; p = (a+b+c)/2

S = 1/2 a·h = 1/2 a 2 b sin C =

a 2 sinB sinC/2 sin A= √p(p-a)(p-b)(p-c)

a,b – стороны, α – один из углов; h – высота S = a·h = a·b·sin α

cos (x + π/2) = -sin x

Формулы tg и ctg

tg x = sin x/ cos x; ctg x = cos x/sin x

ctg (x + πk) = ctg x

ctg (x ± π) = ± ctg x

tg (x + π/2) = – ctg x

ctg (x + π/2) = – tg x

sin 2 x + cos 2 x =1

1 + tg 2 x = 1/ cos 2 x

1 + ctg 2 x = 1/ sin 2 x

tg 2 (x/2) = 1 – cos x/ 1 + cos x

cos 2 (x/2) = 1 + cos x/ 2

sin 2 (x/2) = 1 – cos x/ 2

P = 4 πR 2 = πD 2

V = πh 2 (R-1/3h) = πh/6(h 2 + 3r 2 )

SБОК = 2 πRh = π(r 2 + h 2 ); P= π(2r 2 + h 2 )

V = 1/6 πh 3 + 1/2 π(r 2 + h 2 )· h;

14. Шаровой сектор:

V = 2/3 πR 2 h’ где h’ – высота сегмента, содержащего в секторе

Формула корней квадратного уравнения

ax 2 + bx + c = 0 (a≠0)

Если D=0, то x = -b/2a (D = b 2 -4ac)

Если D>0, то x1,2 = -b± /2a

Арифметическая прогрессия

a n+1 = a n + d, где n – натуральное число

d – разность прогрессии;

a n = a 1 + (n – 1)·d – формула n-го члена

Радиус описанной окружности около многоугольника

R = a/ 2 sin 180/n

Радиус вписанной окружности

L = 2 πR S = πR 2

Площадь конуса

Тангенс угла — отношение противолежащего катета к прилещащему. Котангенс – наоборот.

Формула для определения

Формула Стокса — связывающая скорость падения (V) в жидкости твердой сферической частицы с ее размерами (радиус r), ее плотностью (Dt). а также плотностью ( D ж) и вязкостью (η) жидкости: . Несмотря на ряд несоответствий с условиями проведения… … Толковый словарь по почвоведению

Формула-1 в сезоне 2009 — 60 й Чемпионат мира Формулы 1 ◄ 2008 Сезон 2009 2010 ► … Википедия

Часы прибор для измерения времени — Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

БАЗЕНА ФОРМУЛА — применяется при расчете размеров водоотводных канав, отверстий искусственных сооружений и вместе с формулой Шези служит для определения скорости протекания воды. Эта скорость определяется по формуле Vo = С√Ri, где С коэффициент,… … Технический железнодорожный словарь

ГОСТ Р 7.0.3-2006: Система стандартов по информации, библиотечному и издательскому делу. Издания. Основные элементы. Термины и определения — Терминология ГОСТ Р 7.0.3 2006: Система стандартов по информации, библиотечному и издательскому делу. Издания. Основные элементы. Термины и определения оригинал документа: 3.1.5.19 авторский знак: Условное буквенно цифровое обозначение фамилии… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 16263-70: Государственная система обеспечения единства измерений. Метрология. Термины и определения — Терминология ГОСТ 16263 70: Государственная система обеспечения единства измерений. Метрология. Термины и определения оригинал документа: 4.6. Абсолютное измерение D. Absolute Messung E. Absolute measurement F. Mesurage absolu Измерение … Словарь-справочник терминов нормативно-технической документации

СЕРДЦЕ — СЕРДЦЕ. Содержание: I. Сравнительная анатомия. 162 II. Анатомия и гистология. 167 III. Сравнительная физиология. 183 IV. Физиология. 188 V. Патофизиология. 207 VІ. Физиология, пат.… … Большая медицинская энциклопедия

Сахар свекловичный и тростниковый* — I. Химия. II. Техническое производство. III. Статистика. IV. Акциз на сахар. V. Сахарная нормировка. VI Сахар в международной торговле. I. С. (хим. С 12 Н 22 О 11). Нахождение и добывание свекловичного и тростникового С. см. ниже. С.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Сахар свекловичный и тростниковый — I I. Химия. II. Техническое производство. III. Статистика. IV. Акциз на сахар. V. Сахарная нормировка. VI Сахар в международной торговле. I. С. (хим. С12Н22О11). Нахождение и добывание свекловичного и тростникового С. см. ниже. С. кристаллизуется … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

СССР. Технические науки — Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… … Большая советская энциклопедия

Валютный рынок Форекс — (Forex) Валютный рынок Форекс это международный валютный рынок Валютный рынок Форекс: аналитика, прогнозы, курсы валют, трейдеры и советники Содержание >>>>>>>>>>>> … Энциклопедия инвестора

Читать еще:  Формула сан жеора для похудения
Ссылка на основную публикацию
Adblock
detector
ФигураФормулаЧертеж